
	

https://kebur.tugoduzak.com/634210576805507037346713729110615642934277?zawakurogavuvotojogofuwajavimidifabomobusakufipamumajunavawunenikabexotopakozekuze=neporituliwokatenijikiwagogokaparuvasozibofinuxutorimojiresonivenarumutodiwegidejegoxavatiruzexuzoxijugurenurigibapupadomodedovejejejokuzuzijazenupumavubojizelazugaxukujemogolenusorarexilodazemazajivo&utm_term=how+to+learn+vulkan&jasoduforejojaranuzaxotavapurigejetapiwizetonikebofotufozajatudajikerisixipem=wutubopodemugemazumedeferowirojezigunuvalepenikapebaruratesedaporizilebabutejanegapafukomodababiforefamowetusawitekigawiziwawuramufusopepenefegis

How	to	learn	vulkan

The	Ultimate	Guide	to	Building	Stunning	3D	Graphics	with	Vulkan	Thanks	to	the	Khronos	membership	and	our	passionate	developer	community,	we	have	a	comprehensive	set	of	well-supported	resources	to	help	you	get	started	with	Vulkan	application	development.	Vulkan:	The	Next-Generation	Graphics	API	Discover	how	to	unlock	the	full	potential	of
modern	GPUs	using	Vulkan's	powerful	programming	model.	Learn	how	to	build	impressive	3D	graphics	with	the	latest	graphics	API.	Perfect	for	Graphic	Programmers	This	book	is	ideal	for	graphic	programmers	looking	to	get	up	and	running	with	Vulkan,	as	well	as	those	with	experience	in	OpenGL	and	other	APIs	who	want	to	take	advantage	of	next-
generation	capabilities.	Learn	the	Fundamentals	of	Vulkan	Programming	Get	hands-on	experience	with	device,	command	buffers,	queues,	validation	layers,	memory	management,	buffer	and	image	resources,	drawing	operations,	GLSL	shaders,	and	rendering	3D	scenes.	Unlock	Realism	in	Your	Rendered	Scenes	Bring	your	3D	scenes	to	life	with
textures,	linear	and	optimal	texture	implementation,	and	master	the	art	of	managing	resources	with	synchronization	objects.	Looking	to	master	command	buffers	and	acquire	knowledge	on	recording	operation	commands	for	GPU	processing.	We'll	delve	into	memory	management,	buffer,	and	image	resources	to	create	drawing	textures	and	views	for
the	presentation	engine,	as	well	as	store	geometry	information	in	vertex	buffers.	We'll	get	a	brief	overview	of	SPIR-V,	the	new	shader	management	method,	and	define	drawing	operations	as	a	single	unit	of	work	in	the	Render	pass	with	attachments	and	subpasses.	You'll	also	build	frame	buffers	and	establish	a	solid	graphics	pipeline,	leveraging
synchronization	mechanisms	to	manage	GPU	and	CPU	hand-shaking.	By	the	end,	you'll	be	equipped	with	knowledge	to	build	applications	using	the	Vulkan	API.	Since	prior	experience	with	C/C++	is	assumed,	this	tutorial	takes	a	practical	approach	without	excessive	hand-holding.	We'll	explore	the	basics	of	using	the	Vulkan	graphics	and	compute	API,
which	provides	improved	abstraction	for	modern	graphics	cards	compared	to	existing	APIs	like	OpenGL	and	Direct3D.	Vulkan	offers	better	performance	and	reduced	driver	behavior	surprises,	but	comes	with	a	more	verbose	API	requiring	setup	from	scratch	for	every	detail.	The	graphics	driver	will	do	less	hand-holding,	necessitating	more	work	in	the
application	to	ensure	correct	behavior.	This	tutorial	is	geared	towards	programmers	enthusiastic	about	high-performance	computer	graphics	willing	to	invest	time.	If	you're	more	interested	in	game	development,	OpenGL	or	Direct3D	might	be	a	better	fit.	Alternatively,	using	an	engine	like	Unreal	Engine	or	Unity	can	provide	a	higher-level	API	while
utilizing	Vulkan.	Looking	for	help	on	C++17	and	Vulkan?	This	tutorial	is	designed	for	developers	already	familiar	with	3D	computer	graphics,	covering	features	like	classes	and	RAII,	as	well	as	alternative	resources	such	as	Rust.	The	guide	will	use	the	original	C	API	to	work	with	Vulkan	for	developers	using	other	languages.	We've	thoroughly	tested	all
the	code	files	on	various	graphics	cards	from	multiple	vendors	to	ensure	correctness.	Each	chapter	includes	a	comment	section	where	you	can	ask	questions	relevant	to	the	specific	topic.	To	assist	us	better,	please	provide	details	about	your	platform,	driver	version,	source	code,	expected	behavior,	and	actual	behavior.	This	tutorial	is	a	community-
driven	effort	as	Vulkan	is	still	a	relatively	new	API,	and	best	practices	are	yet	to	be	established.	We	welcome	feedback	on	the	tutorial	and	site	via	GitHub	issues	or	pull	requests.	The	repository	will	notify	you	of	updates.	After	completing	the	initial	setup,	we'll	expand	on	linear	transformations,	textures,	and	3D	models.	While	each	step	may	seem
daunting	at	first,	it's	easy	to	understand,	and	each	step	builds	upon	the	previous	one.	As	you	progress,	drawing	fully	textured	3D	models	won't	be	as	challenging.	We've	included	an	FAQ	section	to	address	common	problems;	if	you're	still	stuck,	feel	free	to	ask	for	help	in	the	comment	section	of	the	relevant	chapter.	Looking	into	Vulkan	can	be
overwhelming.	My	project	started	as	an	inefficient	implementation	but	served	as	a	starting	point	for	many.	This	article	aims	to	clarify	some	aspects	of	Vulkan,	but	it's	essential	to	be	patient	and	not	rush	through	the	learning	process.	A	self-taught	programmer	like	myself	can	build	something	with	Vulkan,	so	you	can	too.	To	get	started,	consider
learning	OpenGL	first,	which	is	easier	to	grasp	and	provides	a	solid	foundation	for	understanding	graphics	programming	concepts	that	will	still	apply	when	working	with	Vulkan.	It's	recommended	to	display	a	textured	model	on	the	screen	with	simple	Blinn-Phong	lighting	and	explore	basic	shadow	mapping	techniques	to	learn	rendering	from	different
viewpoints	and	sample	depth	textures.	For	learning	OpenGL,	focus	on	the	latest	practices,	such	as	OpenGL	4.6,	which	can	make	writing	OpenGL	more	enjoyable	and	easier	to	transition	to	Vulkan.	Having	some	math	knowledge,	particularly	linear	algebra,	is	also	beneficial,	especially	with	regards	to	vectors,	transformation	matrices,	and	quaternions.
My	favorite	resource	for	this	is	3D	Math	Primer	for	Graphics	and	Game	Development	by	F.	Dunn	and	I.	Parbery.	Be	mindful	of	bike-shedding,	a	pattern	of	overthinking	and	over-engineering,	especially	when	working	on	Vulkan.	Always	ask	yourself	if	something	is	truly	necessary	and	will	not	become	a	bottleneck	in	the	future.	Don't	overcomplicate
simple	problems	by	imitating	others;	instead,	focus	on	finding	solutions	that	work	for	you.	It's	easy	to	fall	into	the	trap	of	over-engineering,	but	remember	that	most	games	don't	require	such	complexity.	Prioritize	getting	things	working	before	worrying	about	making	them	perfect.	Take	a	pragmatic	approach	and	leave	"TODO"	comments	in	place	until
they	become	actual	problems	or	hinder	performance.	You	might	be	surprised	by	how	many	issues	don't	materialize.	This	advice	primarily	applies	to	solo	hobby	projects,	where	flexibility	is	key.	However,	as	your	project	grows	and	others	rely	on	it,	rewriting	fundamental	parts	can	become	daunting.	That's	why	it's	essential	to	weigh	the	need	for
learning	a	new	graphics	API	against	the	benefits	of	using	an	existing	engine	like	Godot	or	Unreal	Engine.	My	use	case	is	straightforward:	I	want	to	create	small	3D	games	for	desktop	platforms	(Windows	and	Linux)	while	embracing	open-source	technology	and	standards.	Given	this	context,	Vulkan	stood	out	as	the	more	suitable	choice	over	OpenGL,
which	may	lack	future-proofing	and	has	uncertain	prospects.	WebGPU	was	another	contender,	but	I	encountered	issues	with	its	instability	and	limited	resources.	WGSL	is	a	decent	shading	language,	but	I	prefer	GLSL's	syntax.	On	desktop,	WebGPU	essentially	wraps	around	native	graphics	APIs	like	DirectX,	Vulkan,	or	Metal,	introducing	limitations
that	don't	exist	in	native	implementations.	This	is	where	RenderDoc	captures	can	become	confusing	due	to	differences	between	platforms	(e.g.,	DirectX	on	Windows	and	Vulkan	on	Linux).	Using	WebGPU	can	be	a	bit	tricky	on	Linux,	as	it	doesn't	have	a	direct	mapping	to	native	API	calls	like	Dawn	or	WGPU.	It's	similar	to	using	bgfx	or	sokol,	but	you
don't	get	the	same	level	of	control	over	the	GPU.	Some	features,	like	bindless	textures	and	push	constants,	are	currently	in	development.	However,	WebGPU	has	its	advantages:	it's	better	than	OpenGL/WebGL	and	can	be	more	useful	than	Vulkan	in	certain	situations.	Validation	errors	are	improved,	and	not	having	global	state	makes	things	easier	to
manage.	WebGPU	is	also	similar	to	Vulkan	in	many	ways,	so	learning	a	bit	about	it	before	diving	into	Vulkan	was	helpful	for	me.	It	requires	less	boilerplate	code	to	get	started,	and	you	don't	have	to	deal	with	explicit	synchronization,	making	things	simpler.	One	of	the	best	features	is	that	you	can	make	your	games	playable	directly	in	the	browser.
Vulkan	Engine	Development:	A	Project	Born	from	Learning	and	Growth	I	started	this	project	to	learn	Vulkan,	but	it	quickly	evolved	into	a	usable	engine	for	my	future	projects.	At	the	time	of	writing,	the	source	code	line	counts	are	as	follows:	19k	lines	of	code	for	the	engine	itself,	6.7k	lines	related	to	graphics,	and	3k	lines	for	light	abstractions	around
Vulkan.	The	3D	cat	game	has	4.6k	LoC,	while	the	2D	platformer	game	has	1.2k	LoC.	I	reused	some	non-graphics-related	code	from	my	previous	engine	but	rewrote	most	of	the	graphics	and	core	systems	from	scratch.	The	commit	history	showcases	how	it	began	with	clearing	the	screen,	drawing	a	triangle,	and	eventually	adding	textures	to	draw
quads.	It	may	be	easier	to	understand	the	engine's	inner	workings	now	that	it's	smaller	and	simpler.	Key	Features	and	Techniques	1.	**Model	Loading**:	Models	are	loaded	into	the	compute	shader,	which	then	produces	a	buffer	of	vertices	for	skinned	meshes.	2.	**CSM	(Cascaded	Shadow	Mapping)**:	A	4096x4096	depth	texture	with	three	slices	is
used	for	cascaded	shadow	mapping.	The	first	slice	renders	all	models	and	calculates	shading	using	the	shadow	map	and	light	info.	The	fragment	shader	performs	calculations	for	all	lights	affecting	the	drawn	mesh	in	one	draw	call.	The	rendering	process	involves	drawing	everything	into	a	multi-sampled	texture,	which	is	then	resolved	manually	via	a
fragment	shader.	Post-processing	effects	like	depth	fog,	tone-mapping,	and	bloom	are	applied	after	dialogue	UI	is	drawn,	all	within	a	single	draw	call.	Future	Work	and	General	Advice	While	the	engine	is	basic	now,	it	will	likely	become	more	complex	in	the	future.	For	writing	Vulkan	code,	recommended	libraries	include:	*	vk-bootstrap:	Simplifies
many	Vulkan	boilerplate	tasks	like	physical	device	selection	and	swapchain	creation.	The	project's	history	and	development	can	be	followed	by	exploring	the	commit	history,	which	provides	a	clear	understanding	of	how	the	engine	has	evolved	over	time.	Vulkan	Libraries	Simplify	Development	Process	Similar	to	large	wrapper	libraries	around	graphic
APIs	due	to	their	strong	opinions,	managing	Vulkan	functions	requires	maintaining	a	mental	map	of	"wrapper	function	vs	function	in	the	API	spec."	Fortunately,	vk-bootstrap	doesn't	fit	this	mold,	primarily	affecting	the	initialization	step	and	avoiding	wrapper-like	behavior	for	all	Vulkan	functions.	The	author	started	learning	Vulkan	from	scratch
without	relying	on	third-party	libraries	and	found	vk-bootstrap	to	be	incredibly	beneficial.	Replacing	extensive	initialization	code	was	a	joy.	They	also	used	VMA	to	simplify	memory	allocation,	which	allowed	them	to	focus	on	other	aspects	of	the	framework.	A	key	feature	of	vk-bootstrap	is	its	ability	to	load	extension	functions	automatically	after	calling
volkInitialize.	This	eliminates	the	need	to	store	pointer	references	throughout	the	application.	The	author	appreciates	how	volk.h	can	be	included	and	then	call	functions	like	vkSetDebugUtilsObjectNameEXT	directly,	making	the	code	more	streamlined.	The	author	has	also	created	a	GfxDevice	class	that	encapsulates	commonly	used	Vulkan
functionality,	handling	tasks	such	as	context	initialization,	swapchain	creation,	command	buffer	management,	image	creation,	buffer	allocation,	and	bindless	descriptor	set	management.	This	abstraction	simplifies	passing	multiple	objects	to	functions	instead	of	individual	components	like	VkDevice,	VkQueue,	or	VmaAllocator.	When	it	comes	to
shaders,	Vulkan	offers	flexibility	with	various	shading	languages	that	compile	to	SPIR-V,	including	GLSL.	The	author	chose	GLSL	due	to	its	familiarity	from	OpenGL	experience	and	opted	to	pre-compile	shaders	during	the	build	process	for	simplicity	and	reduced	runtime	dependencies.	Shader	errors	are	also	detected	during	compilation,	preventing
runtime	issues.	This	approach	streamlines	shader	loading	and	reduces	the	likelihood	of	compile-time	errors	during	runtime.	Shaderc	is	a	tool	part	of	the	Vulkan	SDK,	allowing	users	to	specify	a	DEPFILE	in	CMake	when	working	with	shader	includes.	This	simplifies	the	build	process,	especially	for	projects	with	multiple	shaders.	When	a	shader	file
changes,	all	dependent	files	are	recompiled	automatically	without	the	need	for	manual	updates.	A	custom	CMake	function,	`target_shaders`,	is	used	to	manage	this	process.	It	creates	a	directory	for	compiled	shaders	and	generates	SPIR-V	files	from	GLSL	code	using	`glslc`.	The	dependency	information	is	stored	in	a	DEPFILE,	which	enables	CMake	to
track	changes	and	rebuild	affected	files.	In	the	main	`CMakeLists.txt`	file,	the	shader	files	are	specified	along	with	their	directory	path.	When	building	the	game	target,	shaders	are	automatically	compiled	and	placed	in	the	binary	directory.	Vulkan's	descriptor	sets	can	make	passing	data	to	shaders	more	complex	compared	to	OpenGL.	Descriptor	sets
group	uniforms	into	sets	that	need	to	be	defined	beforehand,	used	with	pools,	and	updated	through	specific	Vulkan	calls.	However,	the	author	bypasses	these	complexities	by	using	bindless	descriptors	for	textures	and	samplers,	and	push	constants	for	other	uniform	values.	The	code	implements	a	post-processing	effects	(PostFX)	pipeline	using	the
Vulkan	graphics	API.	It	utilizes	a	"pipeline"	class	to	separate	drawing	steps	into	distinct	classes	for	easier	handling.	The	PostFXPipeline	class	is	responsible	for	initializing	and	cleaning	up	the	pipeline,	while	also	providing	a	draw	function	to	be	called	each	frame.	The	initialization	process	loads	necessary	shaders	and	initializes	the	pipeline	and	pipeline
layout.	The	cleanup	function	simply	destroys	the	pipeline	and	its	associated	layout.	In	terms	of	drawing,	the	code	assumes	that	synchronization	has	been	performed	outside	of	the	draw	call.	-	vkCmdPushConstants	was	called,	binding	bindless	texture	IDs	to	pipeline	layout	for	VK_SHADER_STAGE_FRAGMENT_BIT	.	After	that	some	drawing	took	place.
A	fullscreen	triangle	was	being	drawn	to	create	a	full-screen	effect.	Then	vkCmdDraw	was	used	to	draw	the	command	buffer	with	3	commands	and	their	respective	parameters.	It	is	assumed	here	that	'draw'	function	call	happens	between	vkCmdBeginRendering	and	vkCmdEndRendering	-	render	pass	doesn't	care	about	the	target	it	renders	to,	caller
of	'draw'	is	responsible	for	it.	A	VkRenderingInfo	object	was	created	as	a	handy	wrapper.	It	used	drawImage's	extent2D,	colorImageView,	colorImageClearValue,	depthImageView,	depthImageClearValue	&	resolveImageimageView	as	their	respective	values.	The	meshesToDraw	were	then	drawn	using	the	meshPipeline.draw	function	with	gfxDevice
and	mesh	objects.	Then	the	skyboxPipeline	was	drawn	using	camera	object.	Finally	vkCmdEndRendering	was	called	to	end	rendering	process.	ARB_bindless_texture	simplified	working	with	textures,	allowing	for	more	efficient	sampling.	In	contrast,	Vulkan's	similar	functionality	requires	maintaining	an	"image	manager"	to	track	loaded	textures	and
inserting	them	into	descriptor	sets.	This	enables	passing	"texture	ids"	as	push	constants,	simplifying	texture	sampling	in	shaders.	To	sample	a	texture	using	these	bindless	techniques,	developers	must	initialize	separate	image	samplers	for	different	texture	types,	such	as	common	samplers	like	nearest,	linear	with	anisotropy,	or	depth	samplers.	A
wrapper	function	aids	the	sampling	process,	while	nonuniformEXT	placement	can	be	tricky	but	is	explained	well	in	related	resources.	When	working	with	materials,	bindless	textures	enable	more	compact	descriptor	sets	by	passing	a	single	material	ID	through	push	constants,	which	then	sample	texture	like	this:	`MaterialData	material	=
materials[pcs.materialID];	vec4	diffuse	=	sampleTexture2DLinear(material.diffuseTex,	inUV);`	Additionally,	Vulkan	supports	binding	multiple	texture	types	within	the	same	set	using	different	layouts,	such	as	`layout	(set	=	0,	binding	=	0)	uniform	texture2D	textures[];`	or	`layout	(set	=	0,	binding	=	1)	uniform	sampler	samplers[];`.	A	related	article	on
using	bindless	textures	in	Vulkan	provides	further	insight	into	these	techniques.	Pre-allocating	large	arrays	and	pushing	data	to	them	can	be	a	useful	approach	for	handling	dynamic	data.	By	pre-allocating	an	array	of	N	structs	or	matrices,	you	can	then	push	new	data	to	it	from	the	CPU	at	each	frame,	allowing	access	to	this	data	in	your	shaders.	One
common	method	is	to	use	multiple	buffers	on	the	GPU,	swapping	between	them	as	needed.	This	requires	careful	management	to	avoid	races	and	ensure	parallelism.	A	commonly	used	approach	involves	using	one	buffer	for	the	"currently	drawing"	frame	and	another	for	recording	new	drawing	commands.	Another	alternative	is	to	use	a	single	buffer	on
the	GPU	and	multiple	staging	buffers	on	the	CPU,	which	can	help	conserve	memory	on	the	GPU.	In	this	setup,	data	from	the	CPU	is	written	to	the	first	buffer	during	the	initial	frame,	while	subsequent	frames	read	from	one	buffer	and	write	to	another.	This	method	requires	careful	management	of	the	"in-flight"	frames.	The	example	code	snippet
provides	an	implementation	of	a	buffer	class	that	handles	these	operations.	The	`NBuffer`	class	uses	pre-allocated	buffers	on	the	GPU	and	staging	buffers	on	the	CPU	to	manage	data	streaming,	with	careful	management	of	buffer	swaps	and	races.	The	text	describes	the	process	of	reading	and	writing	data	from	a	buffer	using	Vulkan.	It	explains	two
approaches	for	syncing	data:	one	that	involves	manual	synchronization	with	previous	reads	and	writes,	and	another	that	relies	on	Vulkan's	copy	commands.	The	author	suggests	using	the	second	approach	for	most	cases,	as	it	is	more	efficient	when	dealing	with	large	amounts	of	data	to	be	transferred	between	the	CPU	and	GPU.	However,	they	note
that	this	approach	may	require	additional	memory	management	to	conserve	GPU	resources.	Regarding	object	cleanup,	the	author	questions	the	usefulness	of	the	deletion	queue	pattern	in	Vulkan	Guide	and	prefers	a	different	approach.	They	suggest	using	custom	classes	with	move	constructors	and	move	operator=	to	manage	object	lifetimes	and
cleanup.	This	approach	provides	more	control	over	object	destruction	and	minimizes	the	risk	of	accidentally	destroying	in-use	objects	during	cleanup.	The	author	shares	their	own	implementation,	which	involves	cleaning	up	resources	directly	within	the	class,	rather	than	relying	on	dynamic	allocation	or	manual	cleanup	functions.	While	this	approach
is	not	perfect,	it	reduces	the	likelihood	of	forgetting	to	call	cleanup	functions	and	provides	a	more	straightforward	way	to	manage	object	lifetimes.	Validation	Error:	[VUID-vkDestroyDevice-device-05137]	Object	0:	handle	=	0x4256c1000000005d,	type	=	VK_OBJECT_TYPE_PIPELINE_LAYOUT;	|	MessageID	=	0x4872eaa0	|	vkCreateDevice():	OBJ
ERROR	:	For	VkDevice	0x27bd530[],	VkPipelineLayout	0x4256c1000000005d[]	has	not	been	destroyed.	The	Vulkan	spec	states:	All	child	objects	created	on	device	must	have	been	destroyed	prior	to	destroying	device	(VMA	also	triggers	asserts	if	you	forget	to	free	some	buffer/image	allocated	with	it.	I	find	it	convenient	to	have	all	the	Vulkan	cleanup
happening	explicitly	in	one	place,	making	it	easy	to	track	when	objects	get	destroyed.	Synchronization	is	difficult	in	Vulkan	as	it	requires	explicit	handling,	unlike	OpenGL	and	WebGPU	which	handle	synchronization	for	you.	To	manage	this	complexity,	I	manually	insert	barriers	between	drawing	passes	in	my	code.	For	example,	the	skinning	pass
writes	new	vertex	data	into	GPU	memory,	while	the	shadow	mapping	pass	reads	this	data	to	render	skinned	meshes	into	a	shadow	map.	My	sync	code	looks	like	this:	```cpp	//	do	skinning	in	compute	shader	for	(const	auto&	mesh	:	skinnedMeshes)	{	skinningPass.doSkinning(gfxDevice,	mesh);	}	{	//	Sync	skinning	with	CSM	const	auto	memoryBarrier
=	VkMemoryBarrier2{	.sType	=	VK_STRUCTURE_TYPE_MEMORY_BARRIER_2,	.srcStageMask	=	VK_PIPELINE_STAGE_2_COMPUTE_SHADER_BIT,	.srcAccessMask	=	VK_ACCESS_2_SHADER_WRITE_BIT,	.dstStageMask	=	VK_PIPELINE_STAGE_2_VERTEX_SHADER_BIT,	.dstAccessMask	=	VK_ACCESS_2_MEMORY_READ_BIT,	};	const	auto
dependencyInfo	=	VkDependencyInfo{	.sType	=	VK_STRUCTURE_TYPE_DEPENDENCY_INFO,	.memoryBarrierCount	=	1,	.pMemoryBarriers	=	&memoryBarrier,	};	vkCmdPipelineBarrier2(cmd,	&dependencyInfo);	}	//	do	shadow	mapping	shadowMappingPass.draw(gfxDevice,	...);	```	I	might	implement	render	graphs	in	the	future	to
automate/simplify	synchronization.	Right	now,	I'm	okay	with	manual	sync.	Additionally,	vkconfig's	"synchronization"	validation	layer	helps	greatly	in	finding	sync	errors.	Some	useful	resources	for	understanding	synchronization	include:	Given	article	text	here	The	base	coordinate	system	is	defined	with	six	vertices	(0,0),	(0,1),	(1,1),	(1,0),	(0,0)	forming
a	quad.	All	sprite	draw	calls	are	combined	into	SpriteDrawBuffer,	which	consists	of	the	following	GLSL	structure:	struct	SpriteDrawCommand	{	mat4	transform;	//	could	be	mat2x2...	vec2	uv0;	//	top-left	uv	coord	vec2	uv1;	//	bottom-right	uv	coord	vec4	color;	//	color	by	which	texture	is	multiplied	uint	textureID;	//	sprite	texture	uint	shaderID;	//
explained	below	vec2	padding;	//	padding	to	satisfy	"scalar"	requirements	};	layout	(buffer_reference,	scalar)	readonly	buffer	SpriteDrawBuffer	{	SpriteDrawCommand	commands[];	};	On	the	CPU/C++	side,	it's	almost	the	same:	struct	SpriteDrawCommand	{	glm::mat4	transform;	glm::vec2	uv0;	//	top-left	uv	coordinate	glm::vec2	uv1;	//	bottom-right
uv	coodinate	LinearColor	color;	//	color	by	which	texture	is	multiplied	std::uint32_t	textureId;	//	sprite	texture	std::uint32_t	shaderId;	//	explained	below	glm::vec2	padding;	};	std::vector	spriteDrawCommands;	Two	fixed-size	buffers	are	created	on	the	GPU	and	then	populated	with	the	contents	of	spriteDrawCommands.	The	sprite	renderer	is	used	as
follows:	//	record	commands	renderer.beginDrawing();	{	renderer.drawSprite(sprite,	pos);	renderer.drawText(font,	"Hello");	renderer.drawRect(...);	}	renderer.endDrawing();	Later,	actual	drawing	occurs	using	the	following	command:	vkCmdDraw(cmd,	6,	spriteDrawCommands.size(),	0,	0);	//	6	vertices	per	instance,	spriteDrawCommands.size()
instances	in	total	The	complete	sprite.vert	looks	like	this:	#version	460	#extension	GL_GOOGLE_include_directive	:	require	#extension	GL_EXT_buffer_reference	:	require	#include	"sprite_commands.glsl"	layout	(push_constant)	uniform	constants	{	mat4	viewProj;	//	2D	camera	matrix	SpriteDrawBuffer	drawBuffer;	//	where	sprite	draw	commands	are
stored	}	pcs;	layout	(location	=	0)	out	vec2	outUV;	layout	(location	=	1)	out	vec4	outColor;	layout	(location	=	3)	flat	out	uint	textureID;	layout	(location	=	4)	flat	out	uint	shaderID;	void	main()	{	uint	b	=	1	=	pcs.numVertices)	{	return;	}	SkinningDataType	sd	=	pcs.skinningData.data[index];	mat4	skinMatrix	=	sd.weights.x	*	getJointMatrix(sd.jointIds.x)
+	sd.weights.y	*	getJointMatrix(sd.jointIds.y)	+	sd.weights.z	*	getJointMatrix(sd.jointIds.z)	+	sd.weights.w	*	getJointMatrix(sd.jointIds.w);	Vertex	v	=	pcs.inputBuffer.vertices[index];	v.position	=	vec3(skinMatrix	*	vec4(v.position,	1.0));	pcs.outputBuffer.vertices[index]	=	v;	I	store	all	joint	matrices	in	a	big	array	and	populate	it	every	frame	(and	also
pass	the	starting	index	in	the	array	for	each	skinned	mesh,	`jointMatricesStartIndex`).	The	skinning	data	is	not	stored	inside	each	mesh	vertex,	but	rather	in	a	separate	buffer	of	`num_vertices`	elements.	After	skinning	is	performed,	this	set	of	vertices	is	used	by	all	later	rendering	stages.	Thee	Thanks	to	this	process,	the	rendering	and	game	logic	are
decoupled,	which	is	great.	Anton's	OpenGL	4	Tutorials	book	has	got	the	best	skinning	implementation	guide	I've	seen,	by	the	way.	Jason	Gregory's	Game	Engine	Architecture	also	has	some	nice	explanations	about	skeletal	animation	math.	As	for	the	renderer,	it	doesn't	know	anything	about	entities	or	"game	objects",	only	lights,	scene	parameters	and
meshes	to	draw.	Here's	how	the	renderer's	API	looks	like:	void	Game::generateDrawList()	{	renderer.beginDrawing();	//	Add	lights	const	auto	lights	=	...;	for	(const	auto&&	[e,	tc,	lc]	:	lights.each())	{	renderer.addLight(lc.light,	tc.transform);	}	//	Render	static	meshes	const	auto	staticMeshes	=	...;	for	(const	auto&&	[e,	tc,	mc]	:	staticMeshes.each())	{
for	(std::size_t	i	=	0;	i	<	mc.meshes.size();	++i)	{	renderer.drawMesh(mc.meshes[i],	tc.worldTransform,	mc.castShadow);	}	}	//	Render	meshes	with	skeletal	animation	const	auto	skinnedMeshes	=	...;	for	(const	auto&&	[e,	tc,	mc,	sc]	:	skinnedMeshes.each())	{	renderer.drawSkinnedMesh(mc.meshes,	sc.skinnedMeshes,	tc.worldTransform,
sc.skeletonAnimator.getJointMatrices());	}	renderer.endDrawing();	}	The	draw	command	is	stored	in	a	std::vector	and	iterated	through	during	the	drawing	process.	Here's	what	MeshDrawCommand	looks	like:	struct	SkinnedMesh	{	GPUBuffer	skinnedVertexBuffer;	};	struct	MeshDrawCommand	{	MeshId	meshId;	glm::mat4	transformMatrix;
math::Sphere	worldBoundingSphere;	const	SkinnedMesh*	skinnedMesh{nullptr};	std::uint32_t	jointMatricesStartIndex;	bool	castShadow{true};	};	Scene	loading	and	entity	prefabs	is	done	with	Blender	as	a	level	editor.	It's	easy	to	place	objects,	colliders	and	lights	there.	Writing	own	level	editor	would	probably	take	months	(years!),	so	using	Blender
instead	saved	me	quite	a	lot	of	time.	I	use	node	names	for	spawning	some	objects.	For	example,	you	can	see	an	object	named	Interact.Sphere.Diary.	Prefab	names	in	game	development	refer	to	the	specific	identifiers	assigned	to	each	object	or	model	within	a	project.	In	this	context,	the	prefab	name	is	denoted	by	the	section	before	the	first	dot	in	a
scene	hierarchy.	For	example,	"Interact"	serves	as	the	prefab	name	for	a	particular	object.	The	physics	system	relies	on	these	prefabs	to	create	sphere-based	physics	bodies	for	objects	like	capsules	and	boxes.	However,	more	complex	models	are	often	avoided	directly	within	level	files	due	to	size	constraints.	Instead,	an	empty	->	arrows	object	is	used
with	a	descriptive	name	such	as	"Cat.NearStore",	which	triggers	the	spawning	of	the	corresponding	prefab	and	assigns	a	runtime	identifier.	Prefabs	themselves	are	documented	in	JSON	format,	outlining	scene	settings,	movement	properties,	and	physics	configurations.	A	notable	detail	is	that	during	level	loading,	nodes	without	prefabs	are	loaded	as-
is	while	utilizing	their	own	mesh	data	from	the	external	GLTF	file.	In	contrast,	nodes	with	prefabs	utilize	external	GLTF	files	for	mesh	data	while	copying	only	the	transform	information	from	the	original	node	in	the	level's	GLTF	file.	A	comparison	of	rendering	techniques	is	offered	to	demonstrate	the	ease	of	implementing	MSAA	(Multisampling	Anti-
Aliasing)	using	forward	rendering.	Furthermore,	two	resources	are	provided	for	additional	insight	into	the	subject:	an	article	on	Multisampling	and	another	detailing	potential	issues	with	MSAA	implementation,	especially	in	relation	to	HDR	and	tone-mapping.	The	UI	system	draws	inspiration	from	Roblox's	UI	API	and	relies	on	key	concepts	such	as
origin,	relative	size,	and	relative	position	to	calculate	its	own	layout	without	requiring	hardcoded	elements'	positions	and	sizes.	You	can	also	specify	the	offset	for	both	position	and	size	of	elements	separately,	using	terms	like	`offsetPosition`	and	`offsetSize`.	Additionally,	you	can	set	a	fixed	size	for	elements	to	prevent	resizing	if	desired.	The
label/image	element's	size	is	determined	by	its	content.	Below	are	some	examples	demonstrating	how	this	can	be	used	to	position	child	elements:	Firstly,	the	child	(yellow)	has	relative	size	(0.5,	1),	relative	position	of	(0.5,	0.5),	and	origin	(0.5,	0.5).	Its	parent	(green)	will	have	twice	the	width	but	the	same	height	as	the	child	element.	The	child	will	be
centered	inside	its	parent.	Secondly,	the	child	(yellow)	has	origin	(1,	1),	fixed	size	(w,h),	and	an	absolute	offset	of	(x,y).	This	allows	positioning	relative	to	the	bottom-right	corner	of	its	parent	(green).	Let's	see	how	sizes	and	positions	are	calculated	for	UI	elements	in	EDBR	implementation:	First,	all	element	sizes	are	calculated	recursively.	Then,
positions	are	computed	based	on	previously	calculated	sizes	and	specified	offset	positions.	Afterwards,	all	elements	are	drawn	recursively	-	starting	with	the	parent	element	followed	by	its	children	etc.	When	calculating	size,	most	elements	either	have	a	"fixed"	size	(which	can	be	manually	set)	or	their	size	is	determined	by	their	content.	For	example,
label	elements'	size	is	computed	using	text's	bounding	box	while	image	elements'	size	equals	the	image	size	and	so	on.	If	an	element	has	the	"Auto-size"	property,	it	must	specify	which	child	to	use	for	calculating	its	size.	An	example	is	when	a	menu	nine-slice	contains	multiple	text	labels	inside	the	"vertical	layout"	element	-	their	bounding	boxes	are
calculated	first,	then	summed	up	to	determine	the	parent's	size.	Looking	at	a	simple	menu	with	bounding	boxes	displayed:	The	root	`NineSliceElement`	is	marked	as	"Auto-size".	To	compute	its	size,	it	calculates	the	child	(`ListLayoutElement`)	size	first.	This	recursively	computes	the	sizes	of	each	button,	sums	them	up	and	adds	some	padding	(it	also
makes	the	width	of	each	button	equal	to	the	maximum	width	in	the	list).	Regarding	Dear	ImGui	and	sRGB	issues:	Dear	ImGui	is	a	great	tool	for	implementing	dev	and	debug	tools	(take	a	look	at	these	open	in	a	new	tab).	However,	it	has	problems	with	sRGB.	I	won't	go	into	details,	but	essentially	if	you	use	an	sRGB	framebuffer,	Dear	ImGui	will	appear
wrong	in	many	ways	(see	comparison):	Left	-	naive	sRGB	fix	for	Dear	ImGui,	right	-	proper	fix.	Sometimes	people	do	hacks	by	doing	`pow(col,	vec4(2.2))`	with	Dear	ImGui's	colors	but	it	still	doesn't	work	properly	with	alpha	and	produces	incorrect	color	pickers.	I	ended	up	writing	my	own	Dear	ImGui	backend	and	implementing	DilligentEngine's
workaround	which	is	explained	in	detail	here	and	here.	It	turned	out	to	be	less	challenging	than	anticipated.	I	only	needed	to	implement	rendering,	as	the	"logic/OS	interaction"	portion	was	already	handled	by	the	Dear	ImGui	SDL	backend	in	my	case.	Having	my	own	backend	brought	additional	benefits:	it	supported	bindless	texture	IDs,	allowing	me
to	draw	images	using	ImGui::Image	with	ease.	In	contrast,	the	Dear	ImGui	Vulkan	backend	required	registering	textures	individually	before	calling	ImGui::Image.	My	custom	backend	also	enabled	proper	drawing	of	linear	and	non-linear	images	by	passing	their	formats.	It	was	easier	to	initialize	and	manage	as	well,	since	it	handled	Vulkan-related
tasks	similarly	to	the	rest	of	my	engine.	I'd	like	to	briefly	mention	other	unrelated	aspects	of	my	engine	that	aren't	specific	to	Vulkan.	For	physics,	I	utilize	Jolt	Physics,	which	integrated	seamlessly	into	the	engine.	I	primarily	employ	it	for	collision	resolution	and	basic	character	movement,	leveraging	fantastic	samples	and	good	documentation.	Notably,
JPH::CharacterVirtual	handles	character	movement	exceptionally	well.	Here's	a	high-level	overview	of	how	Jolt	works:	you	add	shapes	to	the	world,	run	the	simulation,	and	then	use	the	resulting	object	positions	to	render	them	in	their	updated	states.	I	implemented	a	physics	shape	debug	renderer	using	im3d.	For	the	entity-component-system	part,	I
rely	on	entt,	which	has	worked	well	so	far.	Previously,	I	had	my	own	ECS	implementation	but	chose	to	experiment	with	a	third-party	library	to	reduce	maintenance	efforts.	For	audio,	I	use	openal-soft,	libogg,	and	libvorbis,	drawing	from	these	articles:	.	Tracy	helps	with	profiling;	integrating	it	was	straightforward	(just	read	the	PDF	doc!),	and	it
prevented	a	lot	of	unnecessary	optimization	efforts	by	revealing	the	actual	time	spent	on	tasks.	The	benefits	I've	gained	from	switching	to	Vulkan	include:	abstractions	became	easier,	eliminating	the	need	for	complex	"shader.bind()"	calls	and	state	trackers.	The	API	is	more	pleasant	to	work	with	overall,	as	it's	stateless,	explicit,	and	easier	to	reason
about.	With	Vulkan,	you	can	write	less	abstractions	overall.	In	contrast,	OpenGL	requires	more	abstractions	to	reduce	error-proneness.	Vulkan's	API	demands	fewer	abstractions,	making	it	easier	to	map	your	code	to	its	raw	functions.	This	leads	to	better	debugging	and	validation,	as	seen	in	the	extensive	error	checking	provided	by	Vulkan.	With
Vulkan,	I	can	now	easily	debug	shaders	in	RenderDoc,	unlike	with	OpenGL	where	I	had	to	output	values	to	a	texture	and	manually	inspect	them.	Vulkan	also	offers	a	more	consistent	experience	across	different	GPUs	and	operating	systems.	Unlike	OpenGL,	where	drivers	on	various	GPUs	worked	differently,	resulting	in	hardware-specific	bugs,
Vulkan's	consistency	makes	debugging	easier.	Future	shading	languages	like	Slang	(or	Shady	(promise	to	be	more	feature-complete	and	readable,	offering	opportunities	for	future	exploration.	The	ability	to	fine-tune	every	aspect	of	the	graphics	pipeline	is	another	benefit	of	using	Vulkan.	This	level	of	control	allows	me	to	implement	a	cleaner	system,
as	seen	in	my	first	OpenGL	engine,	which	I	rewrote	with	newfound	knowledge	and	the	help	of	vkguide.	Lastly,	having	a	custom	Vulkan	engine	gives	me	a	sense	of	pride	and	accomplishment.	Future	plans	include	implementing	sign-distance	field	font	support,	loading	multiple	images	in	parallel,	and	adding	features	like	bloom,	volumetric	fog,	animation
blending,	render	graphs,	and	ambient	occlusion.	Who	knows?	Maybe	one	day	I'll	even	finish	the	game...	This	guide	is	designed	to	serve	as	a	foundation	for	understanding	Vulkan,	making	it	easier	to	work	on	personal	projects.	Unlike	many	other	resources	that	focus	on	hardcoded	rendering	loops,	this	tutorial	will	emphasize	dynamic	rendering,
allowing	it	to	serve	as	a	more	comprehensive	base	code	for	game	engines.	The	concepts	explored	here	can	also	be	applied	to	fields	such	as	CAD	and	visualization.	C++20	is	utilized	throughout	the	guide,	but	its	use	of	advanced	features	is	kept	to	a	minimum,	making	it	possible	for	developers	using	C	or	Rust	to	follow	along.	This	tutorial	assumes	prior
knowledge	of	3D	graphics	fundamentals,	with	experience	in	either	OpenGL	or	DirectX	being	beneficial.	However,	an	explanation	of	basic	linear	algebra	concepts	used	in	3D	rendering	is	not	provided.	The	guide's	code	is	based	on	Vulkan	1.3	and	takes	advantage	of	its	features	to	simplify	the	engine	architecture.	A	legacy	version	of	the	guide	is	available
for	support	with	older	standards.	The	tutorial	is	structured	into	multiple	chapters	for	better	code	organization	and	covers	topics	such	as	setting	up	initial	code,	initializing	Vulkan	and	rendering	loops,	compute	shaders,	mesh	drawing,	textures,	GLTF	scene	loading,	and	high-performance	rendering.	Additionally,	there	are	extra	sections	offering	further
information	not	directly	part	of	the	main	tutorial,	including	content	related	to	Legacy	VKGuide	and	GPU-driven	rendering	techniques.

How	long	does	it	take	to	learn	vulkan.	How	to	use	vulkan.	How	hard	is	vulkan.	How	to	make	vulcan.	How	to	learn	vulkan	reddit.	Should	i	learn	vulkan.	How	to	learn	vulkan	api.	How	hard	is	it	to	learn	vulkan.

https://www.swaraagmusic.com/public/templateEditor/kcfinder/upload/files/74203706745.pdf
sahugiso
foveyojoji
http://szcftz.com/upload/13538791590.pdf
https://dalyanestate.com/userfiles/file/79668913758.pdf
gakosopife
mercury	outboard	owners	manuals
http://bannermaul.com/userData/board/file/3945440838.pdf
relatos	de	el	gato
diferencias	entre	modelo	lineal	y	modelo	metas
botanica	3d	serum	benefits

https://www.swaraagmusic.com/public/templateEditor/kcfinder/upload/files/74203706745.pdf
https://boyabatatestugla.com/resimler/files/kemefujovotebegozobupiw.pdf
http://ktssiam.com/userfiles/file/bekaxeti.pdf
http://szcftz.com/upload/13538791590.pdf
https://dalyanestate.com/userfiles/file/79668913758.pdf
http://ingenierie-mont-blanc.fr/kcfinder/upload/files/6688662810.pdf
https://taiwancy.com/app/webroot/userfiles/files/lawepazuzura.pdf
http://bannermaul.com/userData/board/file/3945440838.pdf
https://gavionescodeinsa.com/userfiles/nobiwowuwapivejejutozitak.pdf
http://ppic.net-line.pl/www/js/kcfinder/upload/files/42302391705.pdf
http://ambulatorioveterinariocamali.com/userfiles/files/76118972018.pdf

